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A theoretical and experimental approach was used to investigate the motion and effectiveness

of a Self-Compensating Dynamic Balancer (SCDB). This is a device intended to minimize the
effects of rotor imbalance and vibratory forces on a rotating system during normal operation.

The basic concept of an automatic dynamic balancer has been described in many U.S. patents.
The SCDB is composed of a circular disk with a groove containing massive balls and low

viscosity damping fluid. The objective of this research is to determine the motion of the balls and

how this ball motion is related to the vibration of the rotating system using both theoretical and

experimental methods. The equations of motion of the balls were derived by the Lagrangian
method. Static and dynamic solutions were derived from the analytic model. To consider the

dynamic stability of the motion, perturbation equations were investigated by two different

methods: Floquet theory and direct computer simulation. On the basis of the results of the

stability investigation, ball positions which result in a balance system are stable above the

critical speed and unstable at critical speed and below critical speed. To determine the actual
critical speed of the rotating system used in the experimental work, a modal analysis was

conducted. Experimental results confirm the predicted ball positions. Based on the theoretical

and experimental results, when the system operates below and near the first critical speed, the
balls do not balance the system. However, when the system operates above the first critical speed

the balls can balance the system.

Key Words: Self-Compensating Dynamic Balancer, Rotating Machinery, Critical Speed,

Perturbation Equation, Dynamic Stability, Frequency Spectrum
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1. Introduction

Tht~ unbalance in the rotors of rotating machin­

ery causes vibrations and generates undesirable

forces. These forces are transmitted to the
machine parts and it may cause damage to the

whole system. Generally, this unbalance is a
result of unavoidable imperfections in rotor

manufacture and assembly. Therefore, the balanc­
ing of rotors is clearly important and is accepted

as fundamental requirement for the normal opera­
tion of modern low and high speed rotating
machines.

'Senior Researcher, Agency for Defense Develop­
ment, P.O.Box 18, Chinhae, Kyungnam 645-600,
Korea

The idea of an automatic dynamic blancer, or
Self-Compensating Dynamic Balancer (SCDB),

has been proposed, in many forms and applica­
tions, through numerous patents to eliminate the

need for balancing and yet minimize the effects of
rotor unbalance and vibratory forces on the rota­

ing system during normal operation. The auto­

matic dynamic balancer is usually composed of a
circular disk with a groove, or race, containing
spherical or cylindrical weights and low viscosity

damping fluid, although early attempts used other
approaches. This idea is claimed to be applicable

for many applications, ranging from space vehicle
components, to washing machines.

An early SCDB was proposed by the William
Sellers & Co. of Philadelphia, in 1904. This

company conducted a series of tests upon an
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experimental steam turbine incorporating an

SCDB that were described by Olsen in comments

on a paper by Thearle(l932). The balancer that

was proposed consisted of three thin eccentric

disks mounted on the shaft with the main turbine

disk. The eccentric disks were a close fit on the

shaft, so there would be friction between the

eccentric disks and the shaft and between the

disks. As the system attained its operating speed,

the eccentric disks were to gradually shifted until

they reached a position that brought the main

disk and themselves into balance.

Between the time of this early investigation and

the present at least twenty U.S. patents were

granted for various types of SCDB devices that

were intended for a wide range of applications.

The U.S. patented devices are listed in Table I

and no attempt has been made to list the foreign

patents. The most recent U.S. patent known to the

authors is that of McGale(l992). Both the appara-

tus and method for dynamically balancing with

such inventions are extremely similar. Another

common feature of these devices is the lack of

both theoretical and experimental investigations

into their operation.

Thearle(l932) and Den Hartog(1956) discussed

why such devices would not work if a Quid was

used in place of the solid weights. Alexan­

der( 1964) presented the results of a theoretical

analysis of an SCDB concept. The configuration

consisted of a series of counterweights in the form

of spherical bearings mounted in races that were

located in a long slender dynamically unbalanced

spinning body. In his simulations, the system was

initially at rest and was brought to its final spin

rate by the application of a torque. The lateral

forces due to dynamic unbalance increase until

the final spin rate is reached, and then it decayed

due to the action of the counterweights. However,

it was not presented how the counterweights

Table 1 U.S. patents for self balancing devices since 1960

Inventor

Pierce

Salathiel

Colvert

Rehnborg

Wesley

Whitlock

Mitchell

Foote

Deakin

Mercer

Onufer

Pierce

Goodrich

LaBarber

Cobb

Cox

Narang

Kilgore

Title

Automatic Wheel Balancing Device

Wheel Balancer

Means and Methods for Balancing

Wheels

Wheel Balance Correction Device

Dynamic Wheel Balancer

Dynamic Wheel Balancer Unit

Dynamic Wheel Balancer

Ventilating Wheel Balancer

Automatic Balancing Device

Automatic Balancer

Balancer for Rotating Body

Dynamic Wheel Balancing Means

Economical Automatic Balancer for

Rotaing Masses

Vibration Dampening Assembly

Dynamic Wheel and Tire Balancing
Apparatus

Automatic and Substantially Perma­

nent Wheel Balancing Device

Wheel and Tire Balancing System

Dynamic Rotational Counterbalancer

Structure

Patent No.

3,006,690

3,164,413

3,191,997

3,314,726

3,346,303

3,376,074

3,376,075

3,408, III

3,410,154

3,433,534

3,462,198

3,464,738

3,733,923

3,799,619

3,913,980

3,953,074

4,269,451

4,674,356

Year

1961

1965

1965

1967

1967

1968

1968

1968

1968

1969

1969

1969

1973

1974

1975

1976

1981

1987
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move and how this motion is related to that of
the long slender body. Cade(l965) suggested the
requirements for operation of a SCDB, but the

soun:e of these suggestions is not clear
The purpose of this paper is to develop a

theoretical understanding of the motion of the
weights in SCDB and how this limits the opera­

tion. Many inventors have suggested various

kinds of automatic dynamic balancer through U.
S. patents, but they left it for others to explain

why the system will work, or will not work. The
motion of the weights in this interesting device is

not yet understood nor well documented.
The following paper is briefly summarized as

follows: in the second section the equations of
motion of the balls are derived using the Lagran­

gian method; in section three the static and
dynamic equilibria of the weights and the stabil­

ity of these equilibria are discussed; some

experimental results are discussed in the fourth

section; and the fifth section presents the conclu­

sions of this investigation.

i'

V-axis

r
1O~I--------;------X_axiS

f-.---x-----i

Fig. 1 Configuration of the SCDB

+ (Y+Rsin(t/r+¢))} (2)

The velocities of both the disk and ith ball are

easily obtained by differentiating the Eqs. (I) and

(2). Because the support springs produce forces
proportional to the distance between C and 0 in

X and Y directions and gravity acts in the nega­
tive Y direction, the Lagrangian for the system is
given by

where lz is the moment of inertia of the disk
about C and n is the total number of balls. The

generalized coordinates for the system are chosen

as

L= ~ Iz~z+ ~ M[Xz+ YZ--2c;~Xsint/r

+2c;~ Ycos t/r + C;Z ~Z]

+l± (m,{X z+ yz+ (¢i+ ~)ZRZ
2 i~l

-2R (¢i + ~) [Xsin(¢i+ t/r)

- Yeos (¢,+ t/r)]})- ~ k(Xz+ y Z)

- ± mig[ Y + Rsin (¢,+ t/r)]
i=l

2. Equations of Motion

A rotating unbalanced disk with a SCDB and
supported by springs is shown in Fig. I. The

rotating disk is of mass M and the SCDB balls
are each of mass m and of finite size. The point C

represents the deflected centerline of the rotating
system, and the point G represents the location of

the mass center of the disk, not including the

SCDB balls. Becuase of imperfections in the disk,

its mass center G is located in a distance c; from

the disk's geometric center at C. Assume that the
center C of the disk is located at the origin 0 of

the XYZ axes when the supporting springs are un­

deflected.
The equations of motion of this system can be

derived by the Lagrangian method. If it is

assumed that the disk moves only in the X and Y

plane, the position vector of mass center G is

expressed as

Yoc= (X +c;eost/r) i+ (Y +c;sint/r)} (I)

and the position vetor of the ith ball is

Y08 = (X + Reos ( t/r + ¢) )i

-MgY (3)

(4)



The vector of generalized forces acting on the
system are

where c is VISCOUS damping coefficient in the

springs, M is the moment driving the rotaing

system and Di¢i is the moment due to the viscous
drag force acting on the ith ball.
Substituting Eqs. (3) and (5) into the Lagrange

equation,
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(5) ~ (tJ;7)~ ~~ = Qj

for j=l to n+3, (6)

yields the equations of motion,

[ M + ~ (mi) JX + eX + kX =ME( V;sin1/+ ~2COS Iff) + ~{mi[R (¢'i+ V;)sin (¢,+ 1/)

+ R(¢i+ ~)2COS(¢i+1/]~, (7)

[M + ~ (mi) J17 + eY +kY=ME( - V;cos1/+ ~2sin1/)

- ~{mi[R (¢'i+ V;)cos (¢i+ 1/) - R (¢,+ ~) 2s in (¢i+ 1/)])- [ M + ~ (m,) Jg, (8)

[L+ ME2+ R2~ (m,) J;p' - [MEsin1/+ Rtl (misin(¢i+ 1/)) JX

+ [ MECOS1/+R~ (micos (¢i+ 1/») J17 + R2,~ (m,;P',) + Rgtl (micos (¢i+ 1/)) =£1 (9)

and

mi[R2
( ;P'i + V;) - RXsin (¢i+ 1/) + R17cos (¢i+ 1/)] + m,R (¢i + ~) [Xcos (¢i + 1/)

+ Ysin(¢,+ 1/)]+ Rgmicos(¢i+ 1/) = - Di¢i (for i= 1,2,"',n) (10)

where Wn is the undamped natural frequency of
the disk and spring system, !;' is the viscous
damping factor of the disk and spring system and

13 is the non dimensional damping of the ball
motion, the equations of motion can be written as

These equations of motion can be simplified by

assuming that the balls have equal mass, m, and
equal coefficients for the moment of their viscous

drag, D, and that the system rotates at a constant

angular speed, ~ = w. By introducing the defini­
tions

( II)

(12)

and

D ( 13)

( 16)

(14)

[ mJ X X Xl+n- -2-+2!;'-~+-
M w nE WnE E

(
W)2 R mIn .. . 2 ]= - cos(wt)+- M-2~[¢isin(¢,+wt)+(¢i+Wt)COS(¢i+Wt) ,

(On c Wn z==1

[ mJ 17 Y Y1 + n- --2-+2!;'--+-
M WnE WnE E

(
W)2 R mIn .. . g [ mJ (15)= - sin(wt)---1l1-2~[¢icos(¢,+wt)--(¢i+wt)zsin(¢i+wt]--2-1+nM 'Wn E Wn ,~l WnE

[ E nln JEX [E m
n

JE17- T'SR inwt+ M~sin(¢,+wt) R-'z'" + Rcoswt+ M~COS(¢i+Wt) R-~2
1=1 cW n 1=1 EWn

1 ill n.. M
+-Wz M~ ¢i MR Zw2

n 1=1 n
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and

¢' IX Ii 1··-+--'2" -R'>Sin(¢i+ wl) +-2 -RCOS (¢,+wt) +~~R-(¢i+ w)[XCOS (¢i+Wt)Wn Wn Wn Wn

+ Ysin(¢i+wt)]+ ffR COS (¢i+ wl) = ~ /3J;-,--
Wn Wn

(17)

where

These equations simply state that the combined
center of mass of the system must be on the axis
of rotation(provided E/R is less than or equal to

n m/M) to obtain this vibration-free solution, as
would be expected.

A dynamic, steady state solution is obtained by

assuming that the balls are positioned at fixed but

steady locations with ¢i= ¢·,=O. To investigate
this case it is useful to make use of complex

notation where Z = X + iY. Multiplying Eq. (15)
by i and adding it to Eq. (14) gives an equation

for the complex displacement Z,

With the assumptions made above, the unknowns

in these equations are X, Y, M and ¢i for i= I to
n. Since there is little interest in the moment M
that is needed to drive the system, Eq. (16) will
not be considered further. The system is then

governed by n +2 coupled nonlinear ordinary
differential equations. The non dimensional

motion of the system, as given by X IE, Y IE and

¢i' is a function of non dimensional time wnt and

the seven parameters, n, mlM, wiWm c/R, 1;, /3
and g I (W~ E). The next section considers some

simple solutions of these equations.

3. Static and Dynamic Equilibria and
Their Stability

If gravitational effects can be ignored, steady
solutions can be easily obtained. When the balls

have reached an equilibrium position, X = X=

X=O, y=y = i=o and ¢i=¢·i=O. In this
case Eq. (17) is satisfied, and Eqs. (14) and (15)

yield, after some rearrangement,

and

E m n
-~+--~COS¢i=OR Mi~l

±sin¢i=O.
i=1

( 18)

(19)

(20)

(23)
(22)

c= ~( :::J2f(j+iI~cos¢,r +( ~~Sin¢ir (21)

solution for Z is also zero. If the system is not

balanced then C describes the imbalance and the

steady solution of Eq. (20) is

and

Notice that if the system is balanced, so that Eqs.

(18) and (19) hold, C is zero and the steady
where C2 is the usual magnification factor (in­

cluding the mass of the balls),

(24)

and

(25)

The motion of the disk is determined by the
position of the balls, as given by Eqs. (23), (24)

and (25) and the position of the balls is deter­

mined by Eq. (17). Extracting both X and Y from
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Eq. (20), substituting these results into Eq. (17)

and making use of some identities yields

where 0 is a small quantity and i= I, 2, ..., n.
Substituting Eqs. (27), (28) and (29) into Eqs.

The most interesting solution to Eq. (26) is the

case when the system is balanced, when Eqs. (18)

and (19) are satisfied, making C zero. Clearly

other solutions exist where sin (,pi - a+ n is
zero. One of these other solutions is shown in Fig.

2. In obtaining these steady solutions no consider­
ation has been given to how they are reached and

none will be given here. However, the stability of
the balanced solution will be investigated next.

To investigate the stability of the solutions of
Eqs. (14), (15) and (17) a perturbation approach

is used. Suppose that the balls have some slight
displacement from their dynamic equilibrium

position, ,pSi. Let

2.01.51.0

Frequency ratio

0.5
o~-iliiiiiiiii~~~_r_~-.,...._~___l

0.0

20

160

¥140

~120
]
'<;100
.g 80.J-------1--------I

1
~ 60
;;
~ 40

...:

(14), (15) and (17), dropping terms of order 02or

higher order, making small angle approximations,
equating terms by the power of 0 and assuming

that ,pSi satisfies Eqs. (18) and (19), the position
that balances the system, gives two sets of equa­

tions. The 00 equations have the steady solutions

X o= Yo=O and ,pSi. The 01 equations are given
by

180 r--------:;::::==::::::===:::::~

Fig. 2 Angular positon of the balls as a function of
frequency ratio for m/M=O.005 and c/R=Oo
005

(26)

(27)

(28)

(29)

Csin(,pi-a+ n =0.

,p,= ,pSi + O,pli+ K,
X=Xo+OXI+K,

y= Yo+OYi+K

and

(1 + nm) XI +Zs.x\ + Xl

= mR ±Ui1isin (,pSi+ ~t) +Z~1>hCOS (,pSi+ liJ7) - liJ2,plisin (,ps,+ liJ7)}
i=l

(1 + nm) i\ +Zd'l + VI
= mR ±{ ;P°liCOS (,pSi+ liJ7) -ZliJ1>hsin (,ps,+ liJ7) - liJ2,pliCOS (,pSi+ liJ7)}

i=l

(30)

(31 )

and

variable form

where I is the identity matrix, to a time equal to

(33)

(35)

(34)

U (0) =1

where U is a matrix, with initial conditions

where the vetor r; is made up of X" XI' Yi, y,
,p" ,p2' ... ' 1>1' 1>2' ... To apply Floquet Theory,
Euler integration is used to find a matrix solution
of the equation

in non dimensional form, where XI and Yi have

been nondimensionalized by c, time by Wn' and liJ
=W/Wn, R=c/R, m=m/M and ;3'=;3/wn·
Although linear, Eqs. (30), (31) and (32) have
time varying coefficiernts and no closed form

solution appears possible. Floquet theory has
been developed for characterizing the functional
behavior of linear ordinary differential equations

with periodic coefficients. The general Floquet
theory is analytical, but a numerical version will

be outlined here.
Equations (30) to (32) can be written in state
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Growth of the perturbation of the positon of
both balls with time, wi Wn = 1.0, mlM =0.
005, c/R=O.OOJ, and /1'=0.01
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Fig. 4 Growth of the perturbation of the position of
one ball with time, wlwn=0.7, m/M=0.005,
c/R=O.OOI, and /1'=0.01

the period of the oscillatory coefficients, T. The
complex eigenvalues of the matrix U(T) are then

determined. If the magnitudes of all these

eigenvalues are less than unity the system is
asymptotically stable. If one or more of the
eigenvalues has a magnitude greater than unity

the system is unstable. Figure 3 shows a result of

such a set of calculations for one ball, with mlM

=0.005, s=O.OI and ¢Si=7[, the offset of the center
of gravity of the disk was chosen so the single ball
would balance the system in this location. Notice
that as the critical speed is approached, increasing
damping of the ball motion is required for a

stable solution. Above a frequency ratio of

approximately lA, damping is not required for

stable solutions. Below critical speed no stable

solutions could be found for ¢Si= 7[ independent
of ball damping. More detail of these calculations
is given by Lee(l993).

Ball position was also determined by numerical
integration of the perturbation Eqs. (30) to (32)

with two balls. Although not conclusive in defin­

ing the motion, these results are in general agree­
ment with the results described above. Figures 4

to 6 are examples of these results. In Fig. 4(wlWn

=0.7) the balls move steadily away from the
balanced position. Figure 5 shows a growing
oscillatory motion of the balls away from the

balanced position for wi W n = 1.0. Figure 6 shows
the stability of the balls for wi Wn = 1.5.
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4. Experimental Results

In additon to the analytical investigation, a

brief experimental investigation was undertaken.

The apparatus consisted of a 1.35m long shaft 2.

54cm( I in) in diameter mounted in self-aligning

bearings and driven by a variable speed D.C.

motor through a flexible coupling. A clear plastic

disk with a O.953cm(3/8 in) diameter race was

centered between the bearings. Steel ball bearings

O.873cm( 11/32 in) could be loaded into the race

along with mineral oil, to act as a damping fluid,

through a. O.953cm(3/8 in) hole in the disk. This

hole shifted the center of gravity of the disk from

the axis of the shaft. The mean radius of the race

from the shaft center was 5.238cm(2-ft in). The

entire system was mounted vertically to minimize

gravitational effects, see Fig. 7. Modal analysis

was applied to the non-rotating system to estimate

the critical speeds of the system. The first critical

speed was found to be 25.4 Hz or 1524 RPM,

higher natural frequencies were found at 106 Hz,

6396 RPM, and 213 Hz, 12,826 RPM. An acceler­

ometer was mounted on one of the bearing caps

Fig. 7 Experimental apparatus

and video and still cameras were used in conjunc­

tion with a strobe light to record the ball posi­

tions with the shaft rotating.
An example of the vibration spectra obtained

with and without balls in the race is shown in

Fig. 8 with the system running at 1000 RPM, 16.

no balls
-30 with 2 balls

;;- -sor:tl
E

~ -70Q.
E
-(

-90

20 40 60 80 100

Frequency (Hz)

Fig.8 Vibration spectra at the bearing at 1000
RPM, with and without balls in the SCOB

Fig.9 Position of the balls in the SCOB at 1000
RPM, ..A" is light side of the disk, "B" is the
position of the balls

no balls
-30 with 8 balls

;;- -so
r:tl
:s
]

-70
~

~
-90

20 40 60 80 100

Frequency (Hz)

Fig. 10 Vibration spectra at the bearing at 1420
RPM, with and without balls in the SCOB



Theoretical and Experimental Motion Analysis of Self-Compensating Dynamic Balancer 175

Fig. 11 Position of the balls in the SCDB at 1420
RPM, "A" is light side of the disk, "B" is the
position of the balls

Fig. 13 Position of the balls in the SCDB at 2400
RPM, "A" is light side of the disk, "B" is the
position of the balls

Fig. 12 Vibration spectra at the bearing at 2400
RPM, with and without balls in the SCDB

no balls
with 2 balls·45

:> .551

'3 -55 i
:g -'75 1
a.
.2 -85

·95

20 40 60
frequency (Hz)

80 100

by the presence of the balls, see Fig. 10. The

position of the balls is seen in Fig. II, at an angle
of about ISO' from the light side of the disk, or ¢
=30'. The observed value of ¢ is obtained from
Eq. (27) with a structural damping, S, between O.

01 and 0.03.
The vibration spectrum at a rotation speed of

2400 RPM, 40 Hz, is shown in Fig. 12. The

presence of two balls in the race nearly eliminates

the signal at the critical speed but increases the

vibration level at the rotational frequency. This
effect is also observed with a large number of
balls. Figure 13 shows the position of the balls,
with ¢ near 180', as anticipated.

7 Hz, well below the critical speed. Only a low
level of vi bration is seen at 16.7 Hz without balls

in the race, but the level is increased by the
presence of the two balls. A significant vibration

level is seen at near 25.4 Hz without the ball in
the race and the level is decreased by the addition

of the balls. However the vibration level is in­

creased at a frequency of about 22 Hz. Figure 9
shows the position of the balls in the race,

approx imately 180' from the light side of the disk,
¢=O', as would be expected. The origin of the

other spectral peaks is not understood, but is
likely due to other natural frequencies in the

structure.
The system could not be run at the critical

speed due to the large deflection that occurred.
The rotation speed closest to the critical speed

that was investigated was 1420 RPM, 23.7 Hz, or

an w/ Wn of .93. In this case eight balls were used
in the race and most spectral peaks were increased

5. Conclusions

The general pupose of the study of rotor

dynamics is to increase understanding of rotor
vibration phenomena and thus provide means for
controlling or eliminating these vibrations. As

mentioned previously, the purpose of this
research is to better understand the operation and

ball motion in a Self-Compensating Dynamic
Balancer(SCDB) and understand the limitations
in using a SCDB. Many inventors have suggested

various kinds of automatic dynamic balancer
through U.S. patents, but they left it for others to
explain why this system will work or will not

work with solid balls and damping fluid that has
a low viscosity. To the author's knowledge, the

motion analysis of the balls and the rotating shaft
as presented in this paper discusses the first
attempt to analyze the dynamics of an automatic
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dynamic balancer with solid balls and damping

fluid. From the preceding work, the following

results were obtained:

( I) The equations of motion of the balls were

derived by the Lagrangian method. Static and

dynamic solutions were derived from the analytic

model. Perturbation solutions were also obtained

from the analytic model. To investigate dynamic

stability of the perturbed motion two different

methods, i.e., the Floquet theory with only one

ball and direct computer simulation, were con­

ducted. On the basis of on the results of stability

investigation, ball positions that result in a bal­

anced system are stable above the critical speed

for /3' = 3.8. At critical speed the position is seen

to be stable for /3' greater than 23. However, the

balanced position is unstable below critical speed

for all /3'.
(2) To understand the motion of the balls and

rotating disk, numerical simulations were carried

out. These results support the conclusions given

above, that if the rotating system operates above

the first critical speed, the balls can balance the

rotating system. At the first critical speed, the

equilibrium of the system depends on the damp­

ing coefficient between the balls and the race.

Large damping coefficients can balance the sys­

tem. Below the first critical speed, the balls can

not balance the system in any case.

(3) In order to evaluate the true merits of the

SCDB, it is necessary to apply it to the actual

rotor system. To be credible, the SCDB must

have, in addition to theoretical appeal, demon­

strated practical appeal. That is, it is necessary to

demonstrate its effectiveness in an actual rotor

system. To investigate the ball motion and to

determine how this ball motion is related to the

rotating shaft, experiments were conducted. On

the basis of the results of these experiments, when

the system operates below the first critical speed

the balls are positioned on the side near the center

of gravity of the system and increase the imbal­

ance in the system. When the system operates near

the first critical speed the balls also do not bal­

ance the system. When the system operates above

the first critical speed the balls positon themselves

so they can balance the system. In this case the

balls are positioned on the opposite side from the

center of gravity of the system. All these experi­

mental results are consistent with theoretical and

numerical results.

However, there are several limitations in using

a SCDB. A single set of the SCDB is sufficient to

effectively cancel the system imbalance in a rotat­

ing shaft that is uniform along its length and a

large portion of the imbalance is radial displace­

ment of the center of gravity from the axis of

rotation. However, based on the experimental

approach, the rotating system must be dynami­

cally balanced to a fairly close tolerance before

the SCDB is effective. If the SCDB is intended for

use in a complicated rotating system, and there is

no way to predict the amount of imblance, it is

very difficult to determine the ball mass and the

dimensions needed for the SCDB.
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